Line 1: Line 1:
 
 
== A) ==
 
== A) ==
  
Line 23: Line 22:
 
== B) ==
 
== B) ==
  
The input <math>u[n]</math> would yield <math>u[n-1]</math>
+
The input <math>'''u[n]'''</math> would yield <math><math>u[n-1]</math></math>

Revision as of 12:11, 12 September 2008

A)

Here we see that when the system input is $ X_k[n]=\delta[n-k]\, $ we get the following system output $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $

Hence if the input is

  • $ X_k[n-n0]=\delta[n-n0-k]\, $ then the output shall be as follows
  • $ Y_k[x[n-n0]]=(k+1)^2 \delta[n-n0-(k+1)] \, $......................................(1)

Now suppose we pass the signal through the system first and then delay it Therefore for input $ X_k[n]=\delta[n-k]\, $ we get $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $

Now, we delay Y_k[n] by n0

  • Therefore the output will be $ Y_k[n-n0]=(k+1)^2 \delta[n-n0-(k+1)] \, $..............(2)

From (1) and (2) it is clear that it is time invariant.


B)

The input $ '''u[n]''' $ would yield $ <math>u[n-1] $</math>

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal