(New page: Here we see that when the system input is <math> X_k[n]=\delta[n-k]\,</math> we get the following system output <math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math> Hence if the input is ...)
 
Line 5: Line 5:
 
Hence if the input is  
 
Hence if the input is  
 
*<math> X_k[n-n0]=\delta[n-n0-k]\,</math>  then the output shall be as follows  
 
*<math> X_k[n-n0]=\delta[n-n0-k]\,</math>  then the output shall be as follows  
*<math> Y_k[n-n0]=(k+1)^2 \delta[n-n0-(k+1)] \,</math>
+
*<math> Y_k[x[n-n0]]=(k+1)^2 \delta[n-n0-(k+1)] \,</math>......................................(1)
 +
 
 +
Now suppose we pass the signal through the system first and then delay it
 +
Therefore for input <math> X_k[n]=\delta[n-k]\,</math> we get
 +
<math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math>
 +
 
 +
Now, we delay Y_k[n] by n0
 +
*Therefore the output will be <math> Y_k[n-n0]=(k+1)^2 \delta[n-n0-(k+1)] \,</math>..............(2)
 +
 
 +
'''From (1) and (2) it is clear that it is time invariant.'''

Revision as of 12:07, 12 September 2008

Here we see that when the system input is $ X_k[n]=\delta[n-k]\, $ we get the following system output $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $

Hence if the input is

  • $ X_k[n-n0]=\delta[n-n0-k]\, $ then the output shall be as follows
  • $ Y_k[x[n-n0]]=(k+1)^2 \delta[n-n0-(k+1)] \, $......................................(1)

Now suppose we pass the signal through the system first and then delay it Therefore for input $ X_k[n]=\delta[n-k]\, $ we get $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $

Now, we delay Y_k[n] by n0

  • Therefore the output will be $ Y_k[n-n0]=(k+1)^2 \delta[n-n0-(k+1)] \, $..............(2)

From (1) and (2) it is clear that it is time invariant.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn