(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
the cascade
 
the cascade
  
x[n]----->Time delay ----> System -----> z[n]
+
*x[n]----->Time delay ----> System -----> z[n]
 
yields the same output as  
 
yields the same output as  
x[n]----->system----->Time Delay-----> y[n]
+
*x[n]----->system----->Time Delay-----> y[n]
  
  
 
== Time Invariance check ==
 
== Time Invariance check ==
  Let us check for y[n] = x[n]^2
+
  Let us check for '''y[n] = x[n]^2'''
  
<math>y[x[n-n0]] = x{[n-n0]^2}</math>  
+
*<math>y[x[n-n0]] = x{[n-n0]^2}</math>  
 
Also,
 
Also,
<math>y[n-n0] = x{[n-n0]^2}</math>
+
*<math>y[n-n0] = x{[n-n0]^2}</math>
 +
Thus the above system is '''time invariant'''
 +
 
 +
 
 +
== Time Variance check ==
 +
 
 +
Let us test for
 +
'''y[n]=cos[nQ]*x[n]'''
 +
 
 +
*<math>y[x[n-n0]]=cos[nQ]*x[n-n0]</math>
 +
Also,
 +
*<math>y[n-n0]= cos[n-n0]Q* x[n-n0]</math>
 +
 
 +
Thus from above we can say that the system is '''time variant'''

Latest revision as of 10:11, 12 September 2008

Time invariance

A system is called time invariant if the cascade

  • x[n]----->Time delay ----> System -----> z[n]

yields the same output as

  • x[n]----->system----->Time Delay-----> y[n]


Time Invariance check

Let us check for y[n] = x[n]^2
  • $ y[x[n-n0]] = x{[n-n0]^2} $

Also,

  • $ y[n-n0] = x{[n-n0]^2} $

Thus the above system is time invariant


Time Variance check

Let us test for

y[n]=cos[nQ]*x[n]
  • $ y[x[n-n0]]=cos[nQ]*x[n-n0] $

Also,

  • $ y[n-n0]= cos[n-n0]Q* x[n-n0] $

Thus from above we can say that the system is time variant

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics