(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
the cascade
 
the cascade
  
x[n]----->Time delay ----> System -----> z[n]
+
*x[n]----->Time delay ----> System -----> z[n]
yields the same output as  
+
yields the same output as  
x[n]----->system----->Time Delay-----> y[n]
+
*x[n]----->system----->Time Delay-----> y[n]
 +
 
 +
 
 +
== Time Invariance check ==
 +
Let us check for '''y[n] = x[n]^2'''
 +
 
 +
*<math>y[x[n-n0]] = x{[n-n0]^2}</math>
 +
Also,
 +
*<math>y[n-n0] = x{[n-n0]^2}</math>
 +
Thus the above system is '''time invariant'''
 +
 
 +
 
 +
== Time Variance check ==
 +
 
 +
Let us test for
 +
'''y[n]=cos[nQ]*x[n]'''
 +
 
 +
*<math>y[x[n-n0]]=cos[nQ]*x[n-n0]</math>
 +
Also,
 +
*<math>y[n-n0]= cos[n-n0]Q* x[n-n0]</math>
 +
 
 +
Thus from above we can say that the system is '''time variant'''

Latest revision as of 10:11, 12 September 2008

Time invariance

A system is called time invariant if the cascade

  • x[n]----->Time delay ----> System -----> z[n]

yields the same output as

  • x[n]----->system----->Time Delay-----> y[n]


Time Invariance check

Let us check for y[n] = x[n]^2
  • $ y[x[n-n0]] = x{[n-n0]^2} $

Also,

  • $ y[n-n0] = x{[n-n0]^2} $

Thus the above system is time invariant


Time Variance check

Let us test for

y[n]=cos[nQ]*x[n]
  • $ y[x[n-n0]]=cos[nQ]*x[n-n0] $

Also,

  • $ y[n-n0]= cos[n-n0]Q* x[n-n0] $

Thus from above we can say that the system is time variant

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang