(New page: 1. Using the same value I used in HW1. <math>e^{\frac{1}{4}j\pi*n}</math> 2. Also using the same value I used in HW1. <math>e^{\sqrt{3}j\pi*n}</math> As we learned in class, any DT f...)
 
 
Line 3: Line 3:
 
<math>e^{\frac{1}{4}j\pi*n}</math>
 
<math>e^{\frac{1}{4}j\pi*n}</math>
  
 +
This function can be periodic or non-periodic depending on the sampling rate. It will be periodic for any multiple of <math>\frac{1}{8}</math> as calculated in HW1. Similarly, for any sampling rate not a multiple of <math>\frac{1}{8}</math>, the function will not be periodic.
  
  
Line 12: Line 13:
  
 
<math>x[n]=\sum{inf}{k=-inf}{d[n-k]}</math>
 
<math>x[n]=\sum{inf}{k=-inf}{d[n-k]}</math>
 +
 +
By taking multiple unit impulses we can make a non-periodic function periodic.

Latest revision as of 09:08, 12 September 2008

1. Using the same value I used in HW1.

$ e^{\frac{1}{4}j\pi*n} $

This function can be periodic or non-periodic depending on the sampling rate. It will be periodic for any multiple of $ \frac{1}{8} $ as calculated in HW1. Similarly, for any sampling rate not a multiple of $ \frac{1}{8} $, the function will not be periodic.


2. Also using the same value I used in HW1.

$ e^{\sqrt{3}j\pi*n} $

As we learned in class, any DT function x[n] can be written as:

$ x[n]=\sum{inf}{k=-inf}{d[n-k]} $

By taking multiple unit impulses we can make a non-periodic function periodic.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood