(New page: ==Linearity== A system is linear if the responses to inputs multiplied by constants are the original responses multiplied by the same constants. <br> <br> In symbols: <br> '''If'''<br> <...)
 
 
Line 16: Line 16:
 
<br>
 
<br>
 
This fulfills the requirements that <math> a*x(t)\,</math> yields <math> a*y(t)\,</math>
 
This fulfills the requirements that <math> a*x(t)\,</math> yields <math> a*y(t)\,</math>
 +
<br>
 +
<br>
 +
In the same sense, you can prove that <math> y(t) = x(t)^2\,</math> is '''not''' linear.
 +
Multiplying <math> x(t)\,</math> by <math> a\,</math> would yield <math> y(t) = a^2*t^2\,</math>

Latest revision as of 07:20, 12 September 2008

Linearity

A system is linear if the responses to inputs multiplied by constants are the original responses multiplied by the same constants.

In symbols:
If
$ y1(t)+y2(t)\, $ are the responses to inputs $ x1(t)+x2(t)\, $
Then
$ a*x1(t)+b*x2(t)\, $ should yield $ a*y1(t)+b*y2(t)\, $

Example

A very simple linear system is $ y(t) = t*x(t)\, $
If $ x(t) = t^2\, $, then $ y(t) = t^3\, $
Multiplying $ x(t)\, $ by a constant $ a\, $ yields $ y(t) = t*x(t) = t*a*t^2 = a*t^3\, $
This fulfills the requirements that $ a*x(t)\, $ yields $ a*y(t)\, $

In the same sense, you can prove that $ y(t) = x(t)^2\, $ is not linear. Multiplying $ x(t)\, $ by $ a\, $ would yield $ y(t) = a^2*t^2\, $

Alumni Liaison

EISL lab graduate

Mu Qiao