(11 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
== Example: Linear ==
 
== Example: Linear ==
  
 +
One-Way
  
 +
x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++
 +
                            =  a*cos(t)+b*sin(t) = z(t)
 +
x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++
  
  
 +
Reverse-Way
 +
 +
cos(t) = x1(t)*a +++
 +
            =  a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)
 +
sin(t) = x2(t)*b +++
 +
 +
 +
since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.
  
 
== Example: Non-Linear ==
 
== Example: Non-Linear ==
 +
 +
One-way
  
  
Line 18: Line 32:
 
                                   = a*2*x1[n]^3+2*b*x2[n]^3
 
                                   = a*2*x1[n]^3+2*b*x2[n]^3
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 +
 +
 +
Reverse-way
 +
 +
 +
x1[n] -> (X)*a +++
 +
              = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3
 +
x2[n] -> (X)*b +++
 +
 +
 +
However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3
 +
the system is not linear because the two inflexive operations are not equal to each other.

Latest revision as of 11:21, 12 September 2008

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

One-Way

x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++

                            =   a*cos(t)+b*sin(t) = z(t)

x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++


Reverse-Way

cos(t) = x1(t)*a +++

            =   a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)

sin(t) = x2(t)*b +++


since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.

Example: Non-Linear

One-way


y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++


Reverse-way


x1[n] -> (X)*a +++

             = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3

x2[n] -> (X)*b +++


However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood