Line 12: | Line 12: | ||
== Example: Non-Linear == | == Example: Non-Linear == | ||
− | + | One-way | |
y[n] = 2*x[n]^3 | y[n] = 2*x[n]^3 | ||
Line 18: | Line 18: | ||
= a*2*x1[n]^3+2*b*x2[n]^3 | = a*2*x1[n]^3+2*b*x2[n]^3 | ||
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++ | x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++ | ||
+ | |||
+ | Reverse-way | ||
+ | |||
+ | x1[n] -> (X)*a +++ | ||
+ | a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3 | ||
+ | x2[n] -> (X)*b +++ |
Revision as of 07:09, 12 September 2008
Linearity
So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).
Example: Linear
Example: Non-Linear
One-way y[n] = 2*x[n]^3
x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++
= a*2*x1[n]^3+2*b*x2[n]^3
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++
Reverse-way
x1[n] -> (X)*a +++
a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3
x2[n] -> (X)*b +++