(Problem 4)
(Example of Non-Linear System)
 
(8 intermediate revisions by the same user not shown)
Line 11: Line 11:
  
 
==Example  of Linear System==
 
==Example  of Linear System==
 +
define
 
:<math>x_1(t) = 4t </math>  
 
:<math>x_1(t) = 4t </math>  
 
:<math>x_2(t) = 3t </math>
 
:<math>x_2(t) = 3t </math>
Line 18: Line 19:
 
:<math>y_2(t) = H*[ x_2(t) ] = 87*[3t]</math>
 
:<math>y_2(t) = H*[ x_2(t) ] = 87*[3t]</math>
  
will satisfy the equation
+
:<math>\alpha y_1(t) + \beta y_2(t) = 87 * [\alpha (4t)] + 87 *[ \beta (3t)] = 87 * [\alpha (4t) + \beta (3t)] </math>
:<math>\alpha y_1(t) + \beta y_2(t) = H [ \alpha x_1(t) + \beta x_2(t)  ]</math>
+
 
for any  <math>\alpha </math> and <math>\beta </math>.
+
Which satisfies the equation
 +
:<math>\alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t)  ]</math>
  
 
==Example of Non-Linear System==
 
==Example of Non-Linear System==
 +
define
 +
:<math>x_1(t) = t^4 </math>
 +
:<math>x_2(t) = t^3 </math>
 +
therefore
 +
:<math>y_1(t) = [ x_1(t) ]^2 = t^8</math>
 +
:<math>y_2(t) = [ x_2(t) ]^2 = t^6</math>
 +
:<math>\alpha y_1(t) + \beta y_2(t) =  \alpha (t^8) +  \beta (t^6) \neq [\alpha x_1(t^4) + \beta x_2(t^3) ]^2</math>

Latest revision as of 07:11, 12 September 2008

Problem 4

A linear is system is a system that given two valid inputs:

$ x_1(t) $
$ x_2(t) $

with respective outputs:

$ y_1(t) = H*[ x_1(t) ] $
$ y_2(t) = H*[ x_2(t) ] $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t) ] $

for any $ \alpha $ and $ \beta $.

Example of Linear System

define

$ x_1(t) = 4t $
$ x_2(t) = 3t $
$ H = 87 $

therefore

$ y_1(t) = H*[ x_1(t) ] = 87*[4t] $
$ y_2(t) = H*[ x_2(t) ] = 87*[3t] $
$ \alpha y_1(t) + \beta y_2(t) = 87 * [\alpha (4t)] + 87 *[ \beta (3t)] = 87 * [\alpha (4t) + \beta (3t)] $

Which satisfies the equation

$ \alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t) ] $

Example of Non-Linear System

define

$ x_1(t) = t^4 $
$ x_2(t) = t^3 $

therefore

$ y_1(t) = [ x_1(t) ]^2 = t^8 $
$ y_2(t) = [ x_2(t) ]^2 = t^6 $
$ \alpha y_1(t) + \beta y_2(t) = \alpha (t^8) + \beta (t^6) \neq [\alpha x_1(t^4) + \beta x_2(t^3) ]^2 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett