(Example of Non-Linear System)
(Example of Non-Linear System)
Line 28: Line 28:
 
:<math>x_1(t) = t^4 </math>  
 
:<math>x_1(t) = t^4 </math>  
 
:<math>x_2(t) = t^3 </math>
 
:<math>x_2(t) = t^3 </math>
:<math>H = t </math>
 
 
therefore
 
therefore
:<math>y_1(t) = H*[ x_1(t) ] = t^5</math>
+
:<math>y_1(t) = [ x_1(t) ]^2 = t^6</math>
:<math>y_2(t) = H*[ x_2(t) ] = t^4</math>
+
:<math>y_2(t) = [ x_2(t) ]^2 = t^5</math>
  
:<math>\alpha y_1(t) + \beta y_2(t) =  87 * [\alpha (4t)] + 87 *[ \beta (3t)] = 87 * [\alpha (4t) + \beta (3t)] </math>
+
:<math>\alpha y_1(t) + \beta y_2(t) =  \alpha (t^6) +  \beta (t^5) \neq [\alpha x_1(t) + \beta x_2(t) ]^2</math>
 
+
Which satisfies the equation
+
:<math>\alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t) ]</math>
+

Revision as of 07:09, 12 September 2008

Problem 4

A linear is system is a system that given two valid inputs:

$ x_1(t) $
$ x_2(t) $

with respective outputs:

$ y_1(t) = H*[ x_1(t) ] $
$ y_2(t) = H*[ x_2(t) ] $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t) ] $

for any $ \alpha $ and $ \beta $.

Example of Linear System

define

$ x_1(t) = 4t $
$ x_2(t) = 3t $
$ H = 87 $

therefore

$ y_1(t) = H*[ x_1(t) ] = 87*[4t] $
$ y_2(t) = H*[ x_2(t) ] = 87*[3t] $
$ \alpha y_1(t) + \beta y_2(t) = 87 * [\alpha (4t)] + 87 *[ \beta (3t)] = 87 * [\alpha (4t) + \beta (3t)] $

Which satisfies the equation

$ \alpha y_1(t) + \beta y_2(t) = H*[ \alpha x_1(t) + \beta x_2(t) ] $

Example of Non-Linear System

define

$ x_1(t) = t^4 $
$ x_2(t) = t^3 $

therefore

$ y_1(t) = [ x_1(t) ]^2 = t^6 $
$ y_2(t) = [ x_2(t) ]^2 = t^5 $
$ \alpha y_1(t) + \beta y_2(t) = \alpha (t^6) + \beta (t^5) \neq [\alpha x_1(t) + \beta x_2(t) ]^2 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett