(Problem 4)
(Example of Linear System)
Line 11: Line 11:
  
 
==Example  of Linear System==
 
==Example  of Linear System==
 +
:<math>x_1(t) = 4t </math>
 +
:<math>x_2(t) = 3t </math>
 +
:<math>H = 87 </math>
 +
therefore
 +
:<math>y_1(t) = H*[ x_1(t) ] = 87*[4t]</math>
 +
:<math>y_2(t) = H*[ x_2(t) ] = 87*[3t]</math>
  
 +
will satisfy the equation
 +
:<math>\alpha y_1(t) + \beta y_2(t) = H [ \alpha x_1(t) + \beta x_2(t)  ]</math>
 +
for any  <math>\alpha </math> and <math>\beta </math>.
  
 
==Example of Non-Linear System==
 
==Example of Non-Linear System==

Revision as of 06:38, 12 September 2008

Problem 4

A linear is system is a system that given two valid inputs:

$ x_1(t) $
$ x_2(t) $

with respective outputs:

$ y_1(t) = H [ x_1(t) ] $
$ y_2(t) = H [ x_2(t) ] $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H [ \alpha x_1(t) + \beta x_2(t) ] $

for any $ \alpha $ and $ \beta $.

Example of Linear System

$ x_1(t) = 4t $
$ x_2(t) = 3t $
$ H = 87 $

therefore

$ y_1(t) = H*[ x_1(t) ] = 87*[4t] $
$ y_2(t) = H*[ x_2(t) ] = 87*[3t] $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H [ \alpha x_1(t) + \beta x_2(t) ] $

for any $ \alpha $ and $ \beta $.

Example of Non-Linear System

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett