(Problem 4)
Line 1: Line 1:
 
==Problem 4==
 
==Problem 4==
A general deterministic system can be described by operator <math>H</math> that maps an input <math>x(t)</math> as a function of <math>t</math> to an output <math>y(t)</math>.
+
A linear is system is a system that given two valid inputs:
 
+
:<math>x_1(t) </math>  
Given two valid inputs  
+
:<math>x_2(t) </math>
:<math>x_1(t) \,</math>
+
with respective outputs:
:<math>x_2(t) \,</math>
+
:<math>y_1(t) = H { x_1(t) } </math>
as well as their respective outputs
+
:<math>y_2(t) = H { x_2(t) } </math>
:<math>y_1(t) = H \left \{ x_1(t) \right \} </math>
+
will satisfy the equation
:<math>y_2(t) = H \left \{ x_2(t) \right \} </math>
+
:<math>\alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } </math>
then a linear system must satisfy
+
for any <math>\alpha </math> and <math>\beta </math>.
:<math>\alpha y_1(t) + \beta y_2(t) = H \left \{ \alpha x_1(t) + \beta x_2(t) \right \} </math>
+
for any [[scalar (mathematics)_ECE301Fall2008mboutin|scalar]] values <math>\alpha \,</math> and <math>\beta \,</math>.
+
<!-- Insert picture dipicting the superposition and scaling properties -->
+

Revision as of 06:26, 12 September 2008

Problem 4

A linear is system is a system that given two valid inputs:

$ x_1(t) $
$ x_2(t) $

with respective outputs:

$ y_1(t) = H { x_1(t) } $
$ y_2(t) = H { x_2(t) } $

will satisfy the equation

$ \alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } $

for any $ \alpha $ and $ \beta $.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal