(Part B)
(Part B: Find input given output)
Line 32: Line 32:
  
 
== Part B: Find input given output ==
 
== Part B: Find input given output ==
LAWL
+
 
 +
The given output is:
 +
 
 +
<math>\,Y[n]=u[n-1]\,</math>
 +
 
 +
 
 +
This can be re-written as:
 +
 
 +
<math>\,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\,</math>
 +
 
 +
<math>\,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\,</math>
 +
 
 +
<math>\,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\,</math>
 +
 
 +
 
 +
Because the system is assumed to be linear, we can write the input as

Revision as of 20:02, 11 September 2008

Part A: Can the system be time invariant?

The system cannot be time invariant.


For instance, the input

$ \,X_0[n]=\delta [n]\, $

yields the output

$ \,Y_0[n]=\delta [n-1]\, $

Thus,

$ \,Y_0[n-1]=\delta [n-2]\, $


However, the input

$ \,X_0[n-1]=\delta [n-1]=X_1[n]\, $

yields the output

$ \,Y_1[n]=4\delta[n-2]\, $


Since these two are not equal

$ \,\delta [n-2]\not= 4\delta[n-2]\, $

the system is time variant (by not fitting the definition of time invariance).

Part B: Find input given output

The given output is:

$ \,Y[n]=u[n-1]\, $


This can be re-written as:

$ \,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\, $

$ \,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\, $

$ \,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\, $


Because the system is assumed to be linear, we can write the input as

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett