(New page: == Part A == BLECK == Part B == LAWL) |
(→Part A) |
||
Line 1: | Line 1: | ||
− | == Part A == | + | == Part A: Can the system be time invariant? == |
− | + | The system cannot be time invariant. | |
+ | |||
+ | |||
+ | For instance, the input | ||
+ | |||
+ | <math>\,X_0[n]=\delta [n]\,</math> | ||
+ | |||
+ | yields the output | ||
+ | |||
+ | <math>\,Y_0[n]=\delta [n-1]\,</math> | ||
+ | |||
+ | Thus, | ||
+ | |||
+ | <math>\,Y_0[n-1]=\delta [n-2]\,</math> | ||
+ | |||
+ | |||
+ | However, the input | ||
+ | |||
+ | <math>\,X_0[n-1]=\delta [n-1]=X_1[n]\,</math> | ||
+ | |||
+ | yields the output | ||
+ | |||
+ | <math>\,Y_1[n]=4\delta[n-2]\,</math> | ||
+ | |||
+ | |||
+ | Since these two are not equal | ||
+ | |||
+ | <math>\,\delta [n-2]\not= 4\delta[n-2]\,</math> | ||
+ | |||
+ | the system is time variant (by not fitting the definition of time invariance). | ||
== Part B == | == Part B == | ||
LAWL | LAWL |
Revision as of 19:28, 11 September 2008
Part A: Can the system be time invariant?
The system cannot be time invariant.
For instance, the input
$ \,X_0[n]=\delta [n]\, $
yields the output
$ \,Y_0[n]=\delta [n-1]\, $
Thus,
$ \,Y_0[n-1]=\delta [n-2]\, $
However, the input
$ \,X_0[n-1]=\delta [n-1]=X_1[n]\, $
yields the output
$ \,Y_1[n]=4\delta[n-2]\, $
Since these two are not equal
$ \,\delta [n-2]\not= 4\delta[n-2]\, $
the system is time variant (by not fitting the definition of time invariance).
Part B
LAWL