(New page: == part a == it can't be a time invariant because output is not same. <math>X_k[n] = \delta[n-k]</math> <math>\delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow sys...)
 
Line 7: Line 7:
 
<math>\delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow system \rightarrow (k+n_0+1)^2\delta[n-(k+n_0+1)]</math>
 
<math>\delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow system \rightarrow (k+n_0+1)^2\delta[n-(k+n_0+1)]</math>
  
<math>\delta[n-k]\rightarrow system \rightarrow Y_k[n] \rightarrow</math>
+
<math>\delta[n-k]\rightarrow system \rightarrow Y_k[n] \rightarrow time delay \rightarrow (k+1)^2\delta[n-(k+n_0+1)] </math>
 +
 
 +
 
 +
== part b ==

Revision as of 18:32, 11 September 2008

part a

it can't be a time invariant because output is not same.

$ X_k[n] = \delta[n-k] $

$ \delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow system \rightarrow (k+n_0+1)^2\delta[n-(k+n_0+1)] $

$ \delta[n-k]\rightarrow system \rightarrow Y_k[n] \rightarrow time delay \rightarrow (k+1)^2\delta[n-(k+n_0+1)] $


part b

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang