(2 intermediate revisions by the same user not shown)
Line 21: Line 21:
  
 
it has  a same output.  therefore it is a time invariant.
 
it has  a same output.  therefore it is a time invariant.
 +
 +
 +
== example of time variant ==
 +
 +
<math>y(t)=3x(5t)</math>
 +
 +
<math>y(t)=x(t-t_0)</math>
 +
 +
<math>z(t)=3y(5t)</math>
 +
 +
<math>=3x(5t-t_0)\leftarrow different output</math>
 +
 +
<math>y(t)=3x(5t)</math>
 +
 +
<math>z(t)=y(t-t_0)</math>
 +
 +
<math>=3x(5(t-t_0))\leftarrow different output</math>
 +
 +
it has a different output.  therefore it is a time variant.

Latest revision as of 17:40, 11 September 2008

Def of Time invariant system

when parameter is an invariable, parameter does not change a value depends on time changing.


example of time invariant

$ y(t)=3x(t) $

$ y(t)=x(t-t_0) $

$ z(t)=3y(t) $

$ =3x(t-t_0)\leftarrow same output $

$ y(t)=3x(t) $

$ z(t)=y(t-t_0) $

$ =3x(t-t_0)\leftarrow same output $

it has a same output. therefore it is a time invariant.


example of time variant

$ y(t)=3x(5t) $

$ y(t)=x(t-t_0) $

$ z(t)=3y(5t) $

$ =3x(5t-t_0)\leftarrow different output $

$ y(t)=3x(5t) $

$ z(t)=y(t-t_0) $

$ =3x(5(t-t_0))\leftarrow different output $

it has a different output. therefore it is a time variant.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva