(New page: Blah == Example of a Liner System == Blah == Example of a Non-Linear System == Blah) |
|||
Line 1: | Line 1: | ||
− | + | == Definition of Linearity == | |
+ | A system is linear if for any inputs <math>\,x_1(t), x_2(t)\,</math> yielding outputs <math>\,y_1(t), y_2(t)\,</math>, respectively, the response to | ||
− | == Example of a | + | <math>\,ax_1(t)+bx_2(t)\,</math> is |
+ | |||
+ | <math>\,ay_1(t)+by_2(t)\,</math>, where <math>\,a,b\in \mathbb{C}, a\not= 0 ,b\not= 0\,</math>. | ||
+ | |||
+ | == Example of a Linear System == | ||
Blah | Blah | ||
== Example of a Non-Linear System == | == Example of a Non-Linear System == | ||
Blah | Blah |
Revision as of 17:24, 11 September 2008
Definition of Linearity
A system is linear if for any inputs $ \,x_1(t), x_2(t)\, $ yielding outputs $ \,y_1(t), y_2(t)\, $, respectively, the response to
$ \,ax_1(t)+bx_2(t)\, $ is
$ \,ay_1(t)+by_2(t)\, $, where $ \,a,b\in \mathbb{C}, a\not= 0 ,b\not= 0\, $.
Example of a Linear System
Blah
Example of a Non-Linear System
Blah