Line 11: Line 11:
  
  
x1 => system => *a \\
+
x1 => system => *a  
 
                     +  => y(t)
 
                     +  => y(t)
x2 => system => *b //
+
x2 => system => *b  
  
  
Line 19: Line 19:
  
  
x1*a => system \\
+
x1*a => system  
 
                 +  => y(t)
 
                 +  => y(t)
x2*b => system //
+
x2*b => system

Revision as of 14:57, 11 September 2008

A system is called linear if for any inputs, x1 & x2, yielding outputs y1 & y2 the response to

a*x1 + b*x2 is a*y1 + b*y2.



i.e

The system below


x1 => system => *a

                    +  => y(t)

x2 => system => *b


equals th system below


x1*a => system

                +  => y(t)

x2*b => system

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood