(Time-Invariance)
(Time-invariant System)
Line 10: Line 10:
 
==Time-invariant System==
 
==Time-invariant System==
  
 +
An example of a time-invariant system would be the system I used for my linearity problem. Therefore the system is a linear, time-invariant system.
 +
 +
 +
<math>x(t) \rightarrow system \rightarrow y(t) = 2x(t) </math>
 +
 +
 +
Proof:
 +
 +
<math>x(t) \rightarrow system \rightarrow 2x(t) \rightarrow time-delay \rightarrow 2x(t-t_0)</math>
 +
 +
 +
<math>x(t) \rightarrow time-delay \rightarrow x(t-t_0) \rightarrow system \rightarrow 2x(t-t_0)</math>
  
 
==Time-variant System==
 
==Time-variant System==

Revision as of 15:08, 11 September 2008

Time Invariance

A time-invariant system is a system in which the output gets time-shifted when the input is time-shifted.


$ x(t - t_0) \rightarrow system \rightarrow y(t - t_0) $


Time-invariant System

An example of a time-invariant system would be the system I used for my linearity problem. Therefore the system is a linear, time-invariant system.


$ x(t) \rightarrow system \rightarrow y(t) = 2x(t) $


Proof:

$ x(t) \rightarrow system \rightarrow 2x(t) \rightarrow time-delay \rightarrow 2x(t-t_0) $


$ x(t) \rightarrow time-delay \rightarrow x(t-t_0) \rightarrow system \rightarrow 2x(t-t_0) $

Time-variant System

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett