(Time Invariant System)
(Time Variant System)
Line 27: Line 27:
 
<math>x(t-T) = 2e^{t-5} </math> -> [SYSTEM] -> <math>2*e^{35t-5}</math>
 
<math>x(t-T) = 2e^{t-5} </math> -> [SYSTEM] -> <math>2*e^{35t-5}</math>
  
<math>x(t) = 2e^{t} -> [SYSTEM] -> <math>y(t-T)=2*e^{35(t-5)} = 2*e^{35t - 175}</math>
+
<math>x(t) = 2e^{t}</math> -> [SYSTEM] -> <math>y(t-T)=2*e^{35(t-5)} = 2*e^{35t - 175}</math>
  
 
Clearly these two results are not the same, so the system is time variant.
 
Clearly these two results are not the same, so the system is time variant.

Revision as of 14:49, 11 September 2008

Time Invariance

A system is time invariant if for a certain x(t) that produces an output y(t) if you shift the input to x(t-T) it just yields the same output shifted by the same T. y(t-T).

Time Invariant System

I propose that a system where

$ x(t) $ -> [SYSTEM] -> $ y(t) = 35x(t) $ is time invariant. Let's check.

Let $ x(t)=2e^t $ and $ T=5 $

$ x(t-T) = 2e^{t-5} $ -> [SYSTEM] -> $ 35*2*e^{t-5} $

$ x(t) = 2e^{t} -> [SYSTEM] -> <math>y(t-T)=35*2*e^{t-5} $

As you can see these two outputs are the same, so the system is time invariant.

Time Variant System

I propose that a system where

$ x(t) $ -> [SYSTEM] -> $ x(35t) $

Is time variant. Let's use the same T and x(t) for this example.

$ x(t-T) = 2e^{t-5} $ -> [SYSTEM] -> $ 2*e^{35t-5} $

$ x(t) = 2e^{t} $ -> [SYSTEM] -> $ y(t-T)=2*e^{35(t-5)} = 2*e^{35t - 175} $

Clearly these two results are not the same, so the system is time variant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett