(Definition)
(Examples)
Line 14: Line 14:
  
 
Linear:
 
Linear:
 +
 +
<math>\ S_{1} = 2x(t + 3) + x(t - 8)</math>
 +
 +
<math>\ S_{2} = x(t - t_{0})</math>
 +
 +
<math>\ S_{1} \rightarrow S_{2} = 2x(t - t_{0} + 3) + x(t - t_{0} - 8)</math>
 +
 +
<math>\ S_{2} \rightarrow S_{1} = 2x(t - t_{0} + 3) + x(t - t_{0} - 8)</math>
 +
 +
 +
Since the results are the same the system is time invariable.
 +
  
 
Non-Linear:
 
Non-Linear:
 +
 +
<math>\ S_{1} = x(-t + 3) - x(-t - 8)</math>
 +
 +
<math>\ S_{2} = x(t - t_{0})</math>
 +
 +
<math>\ S_{1} \rightarrow S_{2} = x(-t + t_{0} + 3) - x(-t + t_{0} - 8)</math>
 +
 +
<math>\ S_{2} \rightarrow S_{1} = x(-t - t_{0} + 3) - x(-t - t_{0} - 8)</math>
 +
 +
 +
Since the results are different they system is time variant.

Revision as of 17:48, 11 September 2008

Definition

If Z(t) and W(t) in the following are equal the system is linear.


Linearity Part 1 ECE301Fall2008mboutin.jpg



Linearity Part 2 ECE301Fall2008mboutin.jpg

Examples

Linear:

$ \ S_{1} = 2x(t + 3) + x(t - 8) $

$ \ S_{2} = x(t - t_{0}) $

$ \ S_{1} \rightarrow S_{2} = 2x(t - t_{0} + 3) + x(t - t_{0} - 8) $

$ \ S_{2} \rightarrow S_{1} = 2x(t - t_{0} + 3) + x(t - t_{0} - 8) $


Since the results are the same the system is time invariable.


Non-Linear:

$ \ S_{1} = x(-t + 3) - x(-t - 8) $

$ \ S_{2} = x(t - t_{0}) $

$ \ S_{1} \rightarrow S_{2} = x(-t + t_{0} + 3) - x(-t + t_{0} - 8) $

$ \ S_{2} \rightarrow S_{1} = x(-t - t_{0} + 3) - x(-t - t_{0} - 8) $


Since the results are different they system is time variant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett