(→Part 2) |
|||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | == Part 1 == | ||
+ | |||
Seems like a lot of people used the cosine function in hw1 so thats the one i'll use now. | Seems like a lot of people used the cosine function in hw1 so thats the one i'll use now. | ||
+ | <pre> | ||
+ | %{ | ||
+ | Jeremiah Wise | ||
+ | 9/11/08 | ||
+ | HW #2 Part A 1 | ||
+ | |||
+ | This program plots and displays a cosine wave | ||
+ | in DT. The first plot is periodic and the second | ||
+ | is not. | ||
+ | %} | ||
+ | |||
+ | |||
+ | %Periodic signal | ||
+ | |||
+ | delta = pi/100; | ||
+ | n = [0 : delta : 6 * pi]; | ||
+ | |||
+ | plot(n, cos(n), '.'); | ||
+ | title('Periodic cosine function'); | ||
+ | xlabel('n'); | ||
+ | ylabel('cos(n)'); | ||
+ | |||
+ | %Non-Periodic Signal | ||
+ | figure(2) | ||
+ | |||
+ | delta = 1; | ||
+ | n = [0 : delta : 6 * pi]; | ||
+ | |||
+ | plot(n, cos(n), '.'); | ||
+ | title('Non-Periodic cosine function'); | ||
+ | xlabel('n'); | ||
+ | ylabel('cos(n)'); | ||
+ | |||
+ | </pre> | ||
[[Image:PeriodicSignal_ECE301Fall2008mboutin.jpg]] | [[Image:PeriodicSignal_ECE301Fall2008mboutin.jpg]] | ||
[[Image:Non-PeriodicSignal_ECE301Fall2008mboutin.jpg]] | [[Image:Non-PeriodicSignal_ECE301Fall2008mboutin.jpg]] | ||
+ | |||
+ | |||
+ | == Part 2 == | ||
+ | |||
+ | If we use the function <math>x[n]=e^{-n/10}*sin(2n)</math> and add shifted copies of the signal together, we obtain a periodic signal. | ||
+ | |||
+ | Note: The exponent in the above equation was changed from -n/20 (from hw1) to -n/10 because it made the graph look better. | ||
+ | |||
+ | <pre> | ||
+ | %{ | ||
+ | Jeremiah Wise | ||
+ | 9/12/08 | ||
+ | HW #2 Part A 2 | ||
+ | |||
+ | This program plots and displays a function that has been made periodic | ||
+ | by adding together shifted copies of that function. | ||
+ | %} | ||
+ | |||
+ | delta = 1 / 1000; | ||
+ | n = [0 : delta : 10 * pi]; | ||
+ | |||
+ | x = exp(-n / 10) .* sin(2 * n); | ||
+ | |||
+ | for k = 1 : 1 : 2 | ||
+ | n = [n (n + k*10*pi)]; | ||
+ | x = [x x]; | ||
+ | end | ||
+ | |||
+ | plot(n,x); | ||
+ | title('Shifted Copies of a Non-Periodic Signal'); | ||
+ | xlabel('n'); | ||
+ | ylabel('x[n]'); | ||
+ | </pre> | ||
+ | |||
+ | [[Image:partA2_ECE301Fall2008mboutin.jpg]] |
Latest revision as of 08:59, 12 September 2008
Part 1
Seems like a lot of people used the cosine function in hw1 so thats the one i'll use now.
%{ Jeremiah Wise 9/11/08 HW #2 Part A 1 This program plots and displays a cosine wave in DT. The first plot is periodic and the second is not. %} %Periodic signal delta = pi/100; n = [0 : delta : 6 * pi]; plot(n, cos(n), '.'); title('Periodic cosine function'); xlabel('n'); ylabel('cos(n)'); %Non-Periodic Signal figure(2) delta = 1; n = [0 : delta : 6 * pi]; plot(n, cos(n), '.'); title('Non-Periodic cosine function'); xlabel('n'); ylabel('cos(n)');
Part 2
If we use the function $ x[n]=e^{-n/10}*sin(2n) $ and add shifted copies of the signal together, we obtain a periodic signal.
Note: The exponent in the above equation was changed from -n/20 (from hw1) to -n/10 because it made the graph look better.
%{ Jeremiah Wise 9/12/08 HW #2 Part A 2 This program plots and displays a function that has been made periodic by adding together shifted copies of that function. %} delta = 1 / 1000; n = [0 : delta : 10 * pi]; x = exp(-n / 10) .* sin(2 * n); for k = 1 : 1 : 2 n = [n (n + k*10*pi)]; x = [x x]; end plot(n,x); title('Shifted Copies of a Non-Periodic Signal'); xlabel('n'); ylabel('x[n]');