Line 22: Line 22:
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>Xk[n]=&delta;[n-k]</td><td>&nbsp;&nbsp;  &nbsp;&nbsp;</td><td>    Yk[n]=(k+1)^{2} &delta;[n-(k+1)]</td>
+
     <td>Xk[n]=&delta;[n-k]</td><td>&nbsp;&nbsp;  &nbsp;&nbsp;</td><td>    Yk[n]=(k+1)<math>^{2}</math> &delta;[n-(k+1)]</td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>
 
For any non-negative integer k
 
For any non-negative integer k
 +
<math>Insert formula here</math>

Revision as of 13:20, 11 September 2008

Part E. Linearity and Time Invariance

A discrete-time system is such that when the input is one of the signals in the left column, then the output is the corresponding signal in the right column:

Input      Output
X0[n]=δ[n]      Y0[n]=δ[n-1]
X1[n]=δ[n-1]      Y1[n]=4δ[n-2]
X2[n]=δ[n-2]      Y2[n]=9 δ[n-3]
X3[n]=δ[n-3]      Y3[n]=16 δ[n-4]
...       ...
Xk[n]=δ[n-k]      Yk[n]=(k+1)$ ^{2} $ δ[n-(k+1)]

For any non-negative integer k $ Insert formula here $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett