Line 1: Line 1:
 
==Linearity and Time Invariance==
 
==Linearity and Time Invariance==
 +
'''6.a)'''
 +
 +
'''the system is defined as'''
 +
 +
<math>X_k[n] = \delta[n - k] \to sys \to  Y_k[n] = (k + 1)^2 \delta[n - (k + 1)]</math>
 +
 +
'''let us check for time invariance'''
 +
 +
'''System followed by time delay'''
 +
 +
'''now,let us apply a time-delay of <math>t_0</math> to the system.'''
 +
 +
 +
<math>\delta[n - k] \to sys \to (k + 1)^2 \delta[n - (k + 1)] \to timedelay \to (k + 1)^2 \delta[n - t_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 +t_0)]  </math>
 +
 +
 +
'''Time-delay followed by system:'''
 +
 +
<math>\delta[n - k] \to timedelay \to \delta[n-(k + t_0)] \to sys \to (k + t_0 + 1)^2 \delta[n - (k + t_0 + 1)]</math>
 +
 +
'''For the system to be time invariant both the outputs should be same but they are not. so the system is not time variant it is rather a time variant system as the output varies with time.'''

Revision as of 09:19, 12 September 2008

Linearity and Time Invariance

6.a)

the system is defined as

$ X_k[n] = \delta[n - k] \to sys \to Y_k[n] = (k + 1)^2 \delta[n - (k + 1)] $

let us check for time invariance

System followed by time delay

now,let us apply a time-delay of $ t_0 $ to the system.


$ \delta[n - k] \to sys \to (k + 1)^2 \delta[n - (k + 1)] \to timedelay \to (k + 1)^2 \delta[n - t_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 +t_0)] $


Time-delay followed by system:

$ \delta[n - k] \to timedelay \to \delta[n-(k + t_0)] \to sys \to (k + t_0 + 1)^2 \delta[n - (k + t_0 + 1)] $

For the system to be time invariant both the outputs should be same but they are not. so the system is not time variant it is rather a time variant system as the output varies with time.

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach