(Question 6b)
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
 
== Question 6a ==
 
== Question 6a ==
  
 +
<math>x[n] \rightarrow \mbox{Time Delay} \rightarrow y[n]=x[n-n_0] \rightarrow System \rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)]</math>
 +
 +
<math>x[n] \rightarrow System \rightarrow Y_k[n]=(k+1)^2 \delta [n-(k+1)] \rightarrow \mbox{Time Delay}\rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)]</math>
 +
 +
So the system is time invariant.
  
 
== Question 6b ==
 
== Question 6b ==
 +
 +
<font size = 4><math>x_0[n]= u[n]</math></font> will yield the output <font size = 4><math>y[n]=u[n-1]</math></font>

Latest revision as of 14:32, 11 September 2008

System

Input: $ X_k[n]=\delta [n-k] $

Output: $ Y_k[n]=(k+1)^2 \delta [n-(k+1)] $

For any non-negative integer k


Question 6a

$ x[n] \rightarrow \mbox{Time Delay} \rightarrow y[n]=x[n-n_0] \rightarrow System \rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)] $

$ x[n] \rightarrow System \rightarrow Y_k[n]=(k+1)^2 \delta [n-(k+1)] \rightarrow \mbox{Time Delay}\rightarrow Y_k[n-n_0]=(k+1)^2 \delta [n-n_0-(k+1)] $

So the system is time invariant.

Question 6b

$ x_0[n]= u[n] $ will yield the output $ y[n]=u[n-1] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett