(→Example of a Time Invariant System) |
(→Example of a Time Invariant System) |
||
Line 7: | Line 7: | ||
== Example of a Time Invariant System == | == Example of a Time Invariant System == | ||
− | Let <math>y(t)=2x(t)+2\!</math>. The system is time invarient if for input <math>x(t-t_0)\!</math> the response is <math>y(t)=2x(t-t_0)+2\!</math>. | + | Let <math>y(t)=2x(t)+2\!</math>. The system is time invarient if for input <math>x(t-t_0)\!</math> the response is <math>y(t-t_0)=2x(t-t_0)+2\!</math>. |
== Example of a System that is not Time Invariant == | == Example of a System that is not Time Invariant == |
Revision as of 12:19, 11 September 2008
Time Invariance
A system is time-invariant if for any input $ x(t)\! $ and any $ t_0\! $ (where $ t_0\! $ is a real number) the response to the shifted input $ x(t-t_0)\! $ is $ y(t-t_0)\! $.
Example of a Time Invariant System
Let $ y(t)=2x(t)+2\! $. The system is time invarient if for input $ x(t-t_0)\! $ the response is $ y(t-t_0)=2x(t-t_0)+2\! $.