(Example of a Time Invariant System)
(Example of a Time Invariant System)
Line 7: Line 7:
  
 
== Example of a Time Invariant System ==
 
== Example of a Time Invariant System ==
Let <math>y(t)=2x(t)+2\!</math>.  The system is time invarient if for input <math>x(t-t_0)\!</math> the response is <math>y(t)=2x(t-t_0)+2\!</math>.
+
Let <math>y(t)=2x(t)+2\!</math>.  The system is time invarient if for input <math>x(t-t_0)\!</math> the response is <math>y(t-t_0)=2x(t-t_0)+2\!</math>.
  
 
== Example of a System that is not Time Invariant ==
 
== Example of a System that is not Time Invariant ==

Revision as of 12:19, 11 September 2008

Time Invariance

A system is time-invariant if for any input $ x(t)\! $ and any $ t_0\! $ (where $ t_0\! $ is a real number) the response to the shifted input $ x(t-t_0)\! $ is $ y(t-t_0)\! $.

Timeinvy ECE301Fall2008mboutin.JPG

Example of a Time Invariant System

Let $ y(t)=2x(t)+2\! $. The system is time invarient if for input $ x(t-t_0)\! $ the response is $ y(t-t_0)=2x(t-t_0)+2\! $.

Example of a System that is not Time Invariant

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett