(→Time Invariance) |
|||
Line 3: | Line 3: | ||
[[Image:Timeinv_ECE301Fall2008mboutin.JPG]] | [[Image:Timeinv_ECE301Fall2008mboutin.JPG]] | ||
+ | |||
+ | |||
+ | == Example of a Time Invariant System == | ||
+ | Let <math>y(t)=2x(t)+2\!</math>. The system is time invarient if for input <math>y(t)=2x(t-t_0)+2\!</math> the response is <math>y(t)=2x(t)+2\!</math>. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | == Example of a System that is not Time Invariant == |
Revision as of 12:09, 11 September 2008
Time Invariance
A system is time-invariant if for any system with input $ x(t)\! $ and output $ y(t)\! $ then the response from an input $ x(t-t_0)\! $ will be $ y(t-t_0)\! $.
Example of a Time Invariant System
Let $ y(t)=2x(t)+2\! $. The system is time invarient if for input $ y(t)=2x(t-t_0)+2\! $ the response is $ y(t)=2x(t)+2\! $.