(Example of a Linear System)
 
Line 1: Line 1:
 +
[[Homework 2_ECE301Fall2008mboutin]] - [[HW2-A Phil Cannon_ECE301Fall2008mboutin|'''A''']] - [[HW2-B Phil Cannon_ECE301Fall2008mboutin|'''B''']] - [[HW2-C Phil Cannon_ECE301Fall2008mboutin|'''C''']] - [[HW2-D Phil Cannon_ECE301Fall2008mboutin|'''D''']] - [[HW2-E Phil Cannon_ECE301Fall2008mboutin|'''E''']]
 +
 
== Linear Systems ==
 
== Linear Systems ==
 
Because we are engineers we will use a picture to describe a linear system:
 
Because we are engineers we will use a picture to describe a linear system:

Latest revision as of 16:05, 11 September 2008

Homework 2_ECE301Fall2008mboutin - A - B - C - D - E

Linear Systems

Because we are engineers we will use a picture to describe a linear system:

Systempjcannon3 ECE301Fall2008mboutin.JPG

Where $ a \! $ and $ b\! $ are real or complex. The system is defined as linear if $ z(t)=w(t)\! $

In other words, if in one scenario we have two signals put into a system, multiplied by a variable, then summed together, the output should equal the output of a second scenario where the signals are multiplied by a variable, summed together, then put through the same system. If this is true, then the system is defined as linear.

Example of a Linear System

Let $ y(t)=x(t) \! $. Then:

Linsystempjcannon ECE301Fall2008mboutin.JPG

Thus, the system $ y(t)=x(t)\! $ is linear.

Example of a Non-Linear System

Let $ y(t)=x^2(t) \! $. Then:

Nonlinsystempjcannon2 ECE301Fall2008mboutin.JPG

Thus, the system $ y(t)=x^2(t)\! $ is non-linear.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal