(New page: A system is called linear if: Image:Linearity.png)
 
Line 2: Line 2:
  
 
[[Image:Linearity_ECE301Fall2008mboutin.png]]
 
[[Image:Linearity_ECE301Fall2008mboutin.png]]
 +
 +
 +
==Examples==
 +
 +
A Linear System:
 +
 +
<math> y(t) = 2x(2t) </math>
 +
 +
<pre>
 +
x1(t) -> Ax1(t)
 +
                |+|  Ax(t) + Bx(t) -System-> 2Ax1(2t) + 2Bx2(2t)
 +
x2(t) -> Bx2(t)
 +
 +
x1(t) -System-> 2x1(2t) -> 2Ax1(2t)
 +
                                    |+|  2Ax1(2t) + 2Bx2(2t)
 +
x2(t) -System-> 2x2(2t) -> 2Bx2(2t)
 +
</pre>
 +
Therefore, this system is linear

Revision as of 11:08, 11 September 2008

A system is called linear if:

Linearity ECE301Fall2008mboutin.png


Examples

A Linear System:

$ y(t) = 2x(2t) $

x1(t) -> Ax1(t)
                |+|  Ax(t) + Bx(t) -System-> 2Ax1(2t) + 2Bx2(2t) 
x2(t) -> Bx2(t)

x1(t) -System-> 2x1(2t) -> 2Ax1(2t)
                                    |+|  2Ax1(2t) + 2Bx2(2t)
x2(t) -System-> 2x2(2t) -> 2Bx2(2t) 

Therefore, this system is linear

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett