(Non-Linear System)
(Non-Linear System)
 
(One intermediate revision by the same user not shown)
Line 29: Line 29:
  
 
[[Image:System3_ECE301Fall2008mboutin.jpg]]
 
[[Image:System3_ECE301Fall2008mboutin.jpg]]
 +
 +
[[Image:System4_ECE301Fall2008mboutin.jpg]]
 +
 +
 +
This system is not linear because <math>ax_1^2(n) + bx_2^2(n) \neq [ax_1(n) + bx_2(n)]^2 </math>

Latest revision as of 14:45, 11 September 2008

Linearity

In my own words, a linear system is a system in which superposition applies. For example, if two inputs x1(t) and x2(t) are applied to the system, the output of the system will the sum of the responses to both inputs, y(t) = y1(t) + y2(t).

For example,

x1(t) + x2(t) $ \rightarrow $ system $ \rightarrow $ y(t) = y1(t) + y2(t)


System ECE301Fall2008mboutin.JPG

Linear System

x[n] $ \rightarrow $ system $ \rightarrow $ y[n] = 2x[n]

Proof:

System1 ECE301Fall2008mboutin.jpg

System2 ECE301Fall2008mboutin.jpg


Based on Prof Mimi's definition 3 of Linearity, since the system produces the same output for both cases, the system is linear.

Non-Linear System

x[n] $ \rightarrow $ system $ \rightarrow $ $ y[n] = x[n]^2 $

Proof:

System3 ECE301Fall2008mboutin.jpg

System4 ECE301Fall2008mboutin.jpg


This system is not linear because $ ax_1^2(n) + bx_2^2(n) \neq [ax_1(n) + bx_2(n)]^2 $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang