(Part 1)
(Part 1)
Line 13: Line 13:
 
is periodic, since
 
is periodic, since
  
<math>\,\exists N\in \mathbb{Z}\,</math> such that <math>\,y[n]=y[n+N], \forall n\in \mathbb{Z}\,</math>
+
<math>\,\exists N\in \mathbb{Z}, N\not= 0\,</math> such that <math>\,y[n]=y[n+N], \forall n\in \mathbb{Z}\,</math>
  
 
<math>\,2cos(\frac{2\pi n}{10})=2cos(\frac{2\pi n}{10}+\frac{2\pi N}{10})\,</math>
 
<math>\,2cos(\frac{2\pi n}{10})=2cos(\frac{2\pi n}{10}+\frac{2\pi N}{10})\,</math>
Line 34: Line 34:
 
<math>\,z[n]=x[\frac{n}{2\pi}]=2cos(n)\,</math>
 
<math>\,z[n]=x[\frac{n}{2\pi}]=2cos(n)\,</math>
  
is not periodic in DT, since there is no integer <math>N\in \mathbb{Z}, N>0</math> such that
+
is not periodic in DT, since there is no integer <math>N\in \mathbb{Z}, N\not= 0</math> such that
  
 
<math>\,z[n]=z[n+N], \forall n\in \mathbb{Z}\,</math>
 
<math>\,z[n]=z[n+N], \forall n\in \mathbb{Z}\,</math>

Revision as of 15:48, 11 September 2008

Part 1

The function was chosen at random from HW1: HW1.4 Hang Zhang - Periodic vs Non-period Functions_ECE301Fall2008mboutin

$ \,x(t)=2cos(2\pi t)\, $


Periodic Signal in DT:

If $ x(t) $ is sampled at $ period=0.1 $, the function

$ \,y[n]=x[0.1n]=2cos(\frac{2\pi n}{10})\, $

is periodic, since

$ \,\exists N\in \mathbb{Z}, N\not= 0\, $ such that $ \,y[n]=y[n+N], \forall n\in \mathbb{Z}\, $

$ \,2cos(\frac{2\pi n}{10})=2cos(\frac{2\pi n}{10}+\frac{2\pi N}{10})\, $

This is true when

$ \,\frac{2\pi N}{10}=2\pi \, $

$ \,N=10\, $


This can be seen in the following plot:

Jkubasci dt periodic ECE301Fall2008mboutin.jpg

Non-Periodic Signal in DT:

However, if $ x(t) $ is sampled at $ period=1/2\pi $, the function

$ \,z[n]=x[\frac{n}{2\pi}]=2cos(n)\, $

is not periodic in DT, since there is no integer $ N\in \mathbb{Z}, N\not= 0 $ such that

$ \,z[n]=z[n+N], \forall n\in \mathbb{Z}\, $

$ \,2cos(n)=2cos(n+N)\, $

This would be true when

$ \,N=2\pi k, k\in \mathbb{Z}, k\not= 0\, $

$ \,\frac{N}{k}=2\pi \, $

but, $ 2\pi $ is irrational, thus there are no values for the integers $ \,N,k\, $ that will satisfy this equation.

This can be seen in the following plot:

Jkubasci dt nonperiodic ECE301Fall2008mboutin.jpg

Part 2

Alumni Liaison

EISL lab graduate

Mu Qiao