(Part 1)
(Part 1)
Line 7: Line 7:
 
'''Periodic Signal in DT:'''
 
'''Periodic Signal in DT:'''
  
If sampled at <math>period=0.1</math>, the function
+
If <math>x(t)</math> is sampled at <math>period=0.1</math>, the function
  
 
<math>\,y[n]=x[0.1n]=2cos(\frac{2\pi n}{10})\,</math>
 
<math>\,y[n]=x[0.1n]=2cos(\frac{2\pi n}{10})\,</math>
Line 15: Line 15:
 
<math>\,y[n]=y[n+10N], \forall N\in Z\,</math>
 
<math>\,y[n]=y[n+10N], \forall N\in Z\,</math>
  
TODO: Add MATLAB plot of the DT function
+
 
 +
This can be seen in the following plot (notice how the values lines up horizontally)
 +
 
 +
[[Image:Jkubasci dt periodic_ECE301Fall2008mboutin.jpg]]
 +
 
 +
'''Non-Periodic Signal in DT:'''
 +
 
 +
However, if <math>x(t)</math> is sampled at <math>period=\frac{1}{2\pi}</math>, the function
 +
 
 +
<math>\,z[n]=x[\frac{n}{2\pi }]=2cos(t)\,</math>
  
 
== Part 2 ==
 
== Part 2 ==

Revision as of 12:14, 11 September 2008

Part 1

The function was chosen at random from HW1: HW1.4 Hang Zhang - Periodic vs Non-period Functions_ECE301Fall2008mboutin

$ \,x(t)=2cos(2\pi t)\, $


Periodic Signal in DT:

If $ x(t) $ is sampled at $ period=0.1 $, the function

$ \,y[n]=x[0.1n]=2cos(\frac{2\pi n}{10})\, $

would be periodic, since

$ \,y[n]=y[n+10N], \forall N\in Z\, $


This can be seen in the following plot (notice how the values lines up horizontally)

Jkubasci dt periodic ECE301Fall2008mboutin.jpg

Non-Periodic Signal in DT:

However, if $ x(t) $ is sampled at $ period=\frac{1}{2\pi} $, the function

$ \,z[n]=x[\frac{n}{2\pi }]=2cos(t)\, $

Part 2

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach