Line 7: Line 7:
 
<MATH>P(A|B)=P(A|B \bigcap C)P(C|B)+P(A|B \bigcap C^c)P(C^c|B) </MATH>
 
<MATH>P(A|B)=P(A|B \bigcap C)P(C|B)+P(A|B \bigcap C^c)P(C^c|B) </MATH>
  
<MATH>P(A|B \bigcap C)P(C \bigcap B)/P(B) </MATH>
+
<MATH>P(A|B \bigcap C)P(B \bigcap C)/P(B) +P(A|B \bigcap C^c)P(B \bigcap C^c)/P(B)</MATH>

Revision as of 19:08, 15 September 2008

The theorem of total probalility states that

$ P(A)=P(A|C)P(C)+P(A|C^c)P(C^c) $


$ P(A|B)=P(A|B \bigcap C)P(C|B)+P(A|B \bigcap C^c)P(C^c|B) $

$ P(A|B \bigcap C)P(B \bigcap C)/P(B) +P(A|B \bigcap C^c)P(B \bigcap C^c)/P(B) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett