(Linearity)
(Linearity)
 
(2 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
A*x1(t) + B*x2(t) => A*y1(t) + B*y2(t) .... extendable for any amount of complex numbers (A, B, C...) and functions (x1, x2, x3...)
 
A*x1(t) + B*x2(t) => A*y1(t) + B*y2(t) .... extendable for any amount of complex numbers (A, B, C...) and functions (x1, x2, x3...)
 +
  
 
  Linear System:  y[n] = 4 * x[n]
 
  Linear System:  y[n] = 4 * x[n]
 +
 
  Let x1[n] = <math>2n</math>  
 
  Let x1[n] = <math>2n</math>  
 
     x2[n] = <math>n^2</math>
 
     x2[n] = <math>n^2</math>
+
 
 
  x1[n] + x2[n] = xtot[n] = <math>2n + n^2</math> ====> ytot[n] = 4* xtot[n] = <math>8n + 4n^2</math>
 
  x1[n] + x2[n] = xtot[n] = <math>2n + n^2</math> ====> ytot[n] = 4* xtot[n] = <math>8n + 4n^2</math>
 
+
 
  x1[n] => y1[n] = 8n        x2[n] => y2[n] = <math>4n^2</math>  ====>    ytot = y1[n] + y2[n] = <math>8n + 4n^2</math>   
 
  x1[n] => y1[n] = 8n        x2[n] => y2[n] = <math>4n^2</math>  ====>    ytot = y1[n] + y2[n] = <math>8n + 4n^2</math>   
 
+
 
  <math>8n + 4n^2</math>  =    <math>8n + 4n^2</math>
 
  <math>8n + 4n^2</math>  =    <math>8n + 4n^2</math>
 +
 
 +
Since the output of the two is the same, the system is linear.
  
  Since the output of the two are the same, the system is linear.
+
 
 +
 
 +
Nonlinear System:  y[n] = x[n]<math>^2</math>
 +
 +
Let x1[n] = <math>2n</math>
 +
    x2[n] = <math>n^2</math>
 +
 +
  x1[n] + x2[n] = xtot[n] = <math>2n + n^2</math> ====> ytot[n] = xtot[n]<math>^2</math>
 +
= <math>4n^2 + 4n^3 + n^4</math>
 +
 
 +
x1[n] => y1[n] = 4n^2        x2[n] => y2[n] = <math>n^4</math>  ====>    ytot = y1[n] + y2[n] = <math>4n^2 + n^4</math> 
 +
 +
<math>4n^2 + 4n^3 + n^4</math>  !=    <math>4n^2 + n^4</math>
 +
 +
  Since the output of the two is not the same, the system is nonlinear.

Latest revision as of 08:10, 11 September 2008

Linearity

Linearity- A system is linear if a constant that multiplies an input to a system is also present in the output. Adding any number of linear combinations of complex numbers and functions of time together does not affect the linearity of the system.

A*x1(t) + B*x2(t) => A*y1(t) + B*y2(t) .... extendable for any amount of complex numbers (A, B, C...) and functions (x1, x2, x3...)


Linear System:  y[n] = 4 * x[n]

Let x1[n] = $ 2n $ 
    x2[n] = $ n^2 $
 
x1[n] + x2[n] = xtot[n] = $ 2n + n^2 $ ====> ytot[n] = 4* xtot[n] = $ 8n + 4n^2 $

x1[n] => y1[n] = 8n        x2[n] => y2[n] = $ 4n^2 $  ====>     ytot = y1[n] + y2[n] = $ 8n + 4n^2 $   

$ 8n + 4n^2 $   =    $ 8n + 4n^2 $
 
Since the output of the two is the same, the system is linear.


Nonlinear System:  y[n] = x[n]$ ^2 $

Let x1[n] = $ 2n $ 
    x2[n] = $ n^2 $

 x1[n] + x2[n] = xtot[n] = $ 2n + n^2 $ ====> ytot[n] = xtot[n]$ ^2 $
= $ 4n^2 + 4n^3 + n^4 $
 
x1[n] => y1[n] = 4n^2        x2[n] => y2[n] = $ n^4 $  ====>     ytot = y1[n] + y2[n] = $ 4n^2 + n^4 $   

$ 4n^2 + 4n^3 + n^4 $   !=    $ 4n^2 + n^4 $ 

Since the output of the two is not the same, the system is nonlinear.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett