(Question 6b)
(Question 6a)
Line 1: Line 1:
 
== Question 6a ==
 
== Question 6a ==
 +
The system is time variant because of the following example:
  
 
I'm assuming <math>n\,</math> is the variable I will be applying the time shift to. I looked at some other peoples work and although they all thought <math>k\,</math> was the time variable, I think <math>k\,</math> is just an arbitrary step moving the function forward relative to some time position <math>n\,</math>. In other words , <math>k=2\,</math> doesn't mean time = 2 sec, it just means 2 steps ahead of time <math>n\,</math>. Another reason I chose <math>n\,</math> to be the time variable is because when you discussed the sifting property in class you sifted by <math>n_0\,</math>, not <math>k\,</math>.  
 
I'm assuming <math>n\,</math> is the variable I will be applying the time shift to. I looked at some other peoples work and although they all thought <math>k\,</math> was the time variable, I think <math>k\,</math> is just an arbitrary step moving the function forward relative to some time position <math>n\,</math>. In other words , <math>k=2\,</math> doesn't mean time = 2 sec, it just means 2 steps ahead of time <math>n\,</math>. Another reason I chose <math>n\,</math> to be the time variable is because when you discussed the sifting property in class you sifted by <math>n_0\,</math>, not <math>k\,</math>.  
Line 17: Line 18:
  
  
Consider the input and output of the system when k = 1
+
Consider the input and output of the system when k = 0
  
<math> X_1[n]=\delta[n-1]\,</math>     
+
<math> X_0[n]=\delta[n]\,</math>     
  
  
 
and  
 
and  
  
<math> Y_1[n]=4\delta[n-2] \,</math>
+
<math> Y_0[n]=\delta[n-1] \,</math>
  
  
Line 30: Line 31:
 
If I time shift the input by <math> n_0\,</math> , then run it through the system I obtain:
 
If I time shift the input by <math> n_0\,</math> , then run it through the system I obtain:
  
<math>X_1[n] \longrightarrow X_1[n-n_0-1] \longrightarrow Y_1[n]=4\delta[n-n_0-2]\,</math>
+
<math>X_1[n] \longrightarrow X_1[n-n_0] \longrightarrow Y_1[n]=\delta[n-n_0-1],</math>
  
Which shifts the system's value when k = 1 a time length of <math> n_0\,</math> forward.
 
  
 +
but this isn't equal to running the input through the system, then time shifting the output by <math> n_0\,</math> 
  
 
+
<math>X_1[n] \longrightarrow Y_1[n]=4\delta[n-1] \longrightarrow Y_1[n-n_0]=4\delta[n-n_0-1]\,</math>
If I run the input through the system, then time shift the output by <math> n_0\,</math>  I obtain:
+
 
+
<math>X_1[n] \longrightarrow Y_1[n]=4\delta[n-2] \longrightarrow Y_1[n-n_0]=4\delta[n-n_0-2]\,</math>
+
 
+
This also shifts the system's value when k = 1 a time length of <math> n_0\,</math> forward. Thus the system is T.I.
+
  
 
== Question 6b ==
 
== Question 6b ==

Revision as of 15:05, 12 September 2008

Question 6a

The system is time variant because of the following example:

I'm assuming $ n\, $ is the variable I will be applying the time shift to. I looked at some other peoples work and although they all thought $ k\, $ was the time variable, I think $ k\, $ is just an arbitrary step moving the function forward relative to some time position $ n\, $. In other words , $ k=2\, $ doesn't mean time = 2 sec, it just means 2 steps ahead of time $ n\, $. Another reason I chose $ n\, $ to be the time variable is because when you discussed the sifting property in class you sifted by $ n_0\, $, not $ k\, $.


$ X_k[n]=Y_k[n] \, $


where

$ X_k[n]=\delta[n-k]\, $


and

$ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $


Consider the input and output of the system when k = 0

$ X_0[n]=\delta[n]\, $


and

$ Y_0[n]=\delta[n-1] \, $


If I time shift the input by $ n_0\, $ , then run it through the system I obtain:

$ X_1[n] \longrightarrow X_1[n-n_0] \longrightarrow Y_1[n]=\delta[n-n_0-1], $


but this isn't equal to running the input through the system, then time shifting the output by $ n_0\, $

$ X_1[n] \longrightarrow Y_1[n]=4\delta[n-1] \longrightarrow Y_1[n-n_0]=4\delta[n-n_0-1]\, $

Question 6b

Assuming this system is linear, an input $ X_0[n]=u[n]\, $ would result in an output $ Y_0[n]=u[n-1]\, $.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood