z-Transform Properties
Property Signal z-Transform ROC
Linearity $ \,\! ax_1[n] + bx_2[n] $ $ \,\! aX_1(z)+bX_2(z) $ At least $ R_1 \cap R_2 $
Time Shifting $ \,\! x[n-n_0] $ $ z^{-n_0}X(z) $ R, except for the possible addition or deletion of the origin
Scaling in the z-Domain $ e^{j\omega_0 n}x[n] $ $ X(e^{-j\omega_0}z) $ R
$ z_0^nx[n] $ $ X\Bigg( \frac{z}{z_0} \Bigg) $ $ z_0 R $
$ \,\! a^nx[n] $ $ \,\! X(a^{-1}z) $ a|R= the set of point {|a|z} for z in R
Time Reversal $ \,\! x[-n] $ $ \,\! X(z^{-1}) $ Inverted R (i.e., R^-1= the set of point z^-1, where z is in R)
Time Expansion $ x_{(k)}[n] = \begin{cases} x[r], & \mbox{if }n=rk \mbox{ for }r\in \mathbb{Z}\\ 0, &\mbox{if }n\neq rk \mbox{ for } r\in \mathbb{Z}\end{cases} $ $ \,\! X(z^k) $ $ R^{1/k} $ (i.e., the set of points $ z^{1/k} $, where z is in R)
Conjugation $ \,\! x^{*}[n] $ $ \,\! X^{*}(z^{*}) $ R
Convolution $ \,\! x_1[n] * x_2[n] $ $ \,\! X_1(z)X_2(z) $ At least the intersection of R_1 and R_2
First Difference $ \,\! x[n] - x[n-1] $ $ \,\! (1-z^{-1})X(z) $ At least the intersection of R and $ |z| > 0 $
Accumulation $ \sum_{k = -\infty}^{n}x[k] $ $ \frac{1}{1-z^{-1}}X(z) $ At least the intersection of R and $ |z| > 1 $
Differentiation in the z-Domain $ \,\! nx[n] $ $ -z\frac{dX(z)}{dz} $ R
Initial-Value Theorem
If x[n] = 0 for n < 0, then  

$ x[0] = \lim_{z\rightarrow \infty} X(z) $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch