z-Transform Pairs | |||
---|---|---|---|
# | Signal | Transform | ROC |
1 | $ \,\!\delta[n] $ | $ \,\! 1 $ | All $ \,\! z $ |
2 | $ \,\!u[n] $ | $ \,\!\frac{1}{1-z^{-1}} $ | $ \,\! |z| > 1 $ |
3 | $ \,\!-u[-n-1] $ | $ \,\!\frac{1}{1-z^{-1}} $ | $ \,\! |z| < 1 $ |
4 | $ \,\!\delta [n-m] $ | $ \,\! z^{-m} $ | All $ \,\!z $ except 0 (if $ \,\! m > 0 $) or $ \,\!\infty\mbox{(if } m < 0 \mbox{)} $ |
5 | $ \,\!\alpha^{n}u[n] $ | $ \,\! \frac{1}{1-\alpha z^{-1}} $ | $ \,\! |z| > |\alpha| $ |
6 | $ \,\! -\alpha^{n}u[-n-1] $ | $ \,\!\frac{1}{1-\alpha z^{-1}} $ | $ \,\! |z| < |\alpha| $ |
7 | $ \,\! n\alpha^{n}u[n] $ | $ \,\! \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ | $ \,\! |z| > |\alpha| $ |
8 | $ \,\! -n\alpha^{n}u[-n-1] $ | $ \,\! \frac{\alpha z^{-1}}{(1-\alpha z^{-1})^{2}} $ | $ \,\! |z| < |\alpha| $ |
9 | $ \,\! [cos(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[cos(\omega_0)]z^{-1}}{1-[2cos(\omega_0)]z^{-1}+z^{-2}} $ | $ \,\! |z| > 1 $ |
10 | $ \,\! [sin(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[cos(\omega_0)]z^{-1}}{1-[2cos(\omega_0)]z^{-1}+z^{-2}} $ | $ \,\! |z| > 1 $ |
11 | $ \,\! [r^{n}cos(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[rcos(\omega_0)]z^{-1}}{1-[2rcos(\omega_0)]z^{-1}+r^{2}z^{-2}} $ | $ \,\! |z| > r $ |
12 | $ \,\! [r^{n}sin(\omega_0 n)]u[n] $ | $ \,\! \frac{1-[rcos(\omega_0)]z^{-1}}{1-[2rcos(\omega_0)]z^{-1}+r^{2}z^{-2}} $ | $ \,\! |z| > r $ |