References
More on String Theory and Riemann Surfaces: http://www.damtp.cam.ac.uk/user/rar31/LectureNotes.pdf
More on Mathematical topology -- This was a class project from a class at Colorado State. The introduction is also particularly entertaining: https://www.math.colostate.edu/~renzo/teaching/Topology10/Notes.pdf
A very helpful video in visualizing what Riemann surfaces look like and explains how they work in the complex plane. https://www.youtube.com/watch?v=4MmSZrAlqKc
More on Hyperelliptic curves and its other properties: https://www.acadsci.fi/mathematica/Vol25/schmutz1.pdf
And this one written by someone from Purdue: http://www.mathe2.uni-bayreuth.de/stoll/teaching/ArithHypKurven-SS2014/Skript-ArithHypCurves-pub-screen.pdf
To explain how geodescies work, this is a really cool and pretty video: https://www.youtube.com/watch?v=NfqrCdAjiks
A good site for understanding manifolds: http://bjlkeng.github.io/posts/manifolds/
For integration on surfaces: https://d-nb.info/1161096876/34
For derivation between surfaces: https://www.uio.no/studier/emner/matnat/math/MAT4800/h16/riesurf.pdf
Helpful explanation of complex tori: https://math.berkeley.edu/~teleman/math/Riemann.pdf
Great for understanding multivalued functions and how the surfaces display them: https://science.larouchepac.com/riemann/page/22 https://science.larouchepac.com/riemann/page/23
More on Riemann Surfaces in general (other properties, definitions, and theories): http://www.math.caltech.edu/~2014-15/2term/ma130b/files/AlgCurv-RS-Miranda.pdf