References and Further Reading

References:
Information:
https://www.jstor.org/stable/2974763?seq=1 (Proof of polynomials of degree 5 or higher being unsolvable in the general sense)
https://en.wikipedia.org/wiki/Group_(mathematics) (Information for groups and group theory)
https://mathworld.wolfram.com/GaloisGroup.html (Galois group info)
https://www.youtube.com/watch?v=3aNeCWRjh8I (Symmetric groups)
https://www.youtube.com/watch?v=8A84sA1YuPw (Cyclic groups)
https://mathworld.wolfram.com/Field.html (Fields)
https://mathworld.wolfram.com/ExtensionField.html (Field extensions)
https://mathworld.wolfram.com/FundamentalTheoremofGaloisTheory.html (Fundamental Theorem of Galois Theory)
https://www.britannica.com/biography/Evariste-Galois (Information about Galois himself)
https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem (Abel-Ruffini Theorem)

Images:
https://commons.wikimedia.org/wiki/File:Evariste_galois.jpg (Figure 1.1)
https://commons.wikimedia.org/wiki/File:Cyclic_group.svg (Figure 2.1)
https://www.johndcook.com/blog/2013/12/02/visualizing-galois-groups-of-quadratics/ (Figure 4.1)
https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem (Figure 4.2 and 4.3)
https://commons.wikimedia.org/wiki/File:Lattice_diagram_of_Q_adjoin_the_positive_square_roots_of_2_and_3,_its_subfields,_and_Galois_groups.svg (Figure 4.4)
https://mathworld.wolfram.com/AngleTrisection.html (Figure 5.1)
https://en.wikipedia.org/wiki/Quaternion_group (Figure 6.1)

Further Reading:
https://www.math3ma.com/blog/what-is-galois-theory-anyway (A nice treatment of field theory and group theory in the context of Galois Theory)
https://nrich.maths.org/1422 (An overview of Galois theory and the Galois group)
https://en.wikipedia.org/wiki/Quaternion_group (Quaternion group theory)
http://www.science4all.org/article/galois-theory/ (A light treatment of Galois Theory)
https://brilliant.org/wiki/group-theory-introduction/ (For those who want to learn more about Group Theory)

Back to Walther MA271 Fall2020 topic1

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva