Collective Table of Formulas

Indefinite Integrals with tan(x)

click here for more formulas


$ \int \tan a x d x = - \frac {1}{a} \ln {\cos a x } +C $
$ \int \tan ^2 a x d x = \frac { \tan ax}{a} - x +C $
$ \int \tan ^3 a x d x = \frac {\tan^2 ax}{2a}+ \frac{1}{a} \ln {\cos a x}+C $
$ \int \frac {\tan^n ax }{\cos^2 a x}dx = \frac {\tan^{n+1} a x}{(n+1)a} +C $
$ \int \frac {1}{\cos^2 a x \tan ax }dx = \frac {1}{a} \ln {\tan a x} +C $
$ \int \frac {dx}{ \tan ax } = \frac {1}{a} \ln {\sin a x} +C $
$ \int x \tan ax dx = \frac {1}{a^2} \left \{\frac{(a x)^3}{3} + \frac{(ax)^5}{15}+ \frac {2(ax)^7}{105} + \cdot \cdot \cdot + \frac {2^{2n}(2^{2n-1})Bn(ax)^{2n-1}}{(2n+1)!} + \cdot \cdot \cdot \right \} +C $
$ \int \frac {\tan ax }{ x } dx = ax + \frac{(a x)^3}{9} + \frac{2(ax)^5}{75} + \cdot \cdot \cdot + \frac {2^{2n}(2^{2n-1})Bn(ax)^{2n-1}}{(2n-1)(2n)!} + \cdot \cdot \cdot +C $
$ \int x \tan^2 ax dx = \frac {x \tan ax}{a} + \frac {1}{a^2} \ln {\cos a x} - \frac {x^2}{2} +C $
$ \int \frac {dx}{p+q \tan ax} = \frac {px}{p^2+q^2} + \frac {q}{a(p^2+q^2)} \ln {\left( q\sin a x + p \cos ax \right)} +C $
$ \int \tan^n ax dx = \frac {\tan^{n+1}ax}{(n+1)a} -\int \tan^{n-2} a x dx +C $


Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett