Collective Table of Formulas

General Rules for Indefinite Integrals

click here for more formulas


$ \int a d x = a x +C $
$ \int a f ( x ) d x = a \int f ( x ) d x $
$ \int ( u \pm v \pm w \pm \cdot \cdot \cdot ) d x = \int u d x \pm \int v d x \pm \int w d x \pm \cdot \cdot \cdot $
$ \int u d v = u v - \int v d u $
$ \int f ( a x ) d x = \frac{1}{a} \int f ( u ) d u $
$ \int F \{ f ( x ) \} d x = \int F ( u ) \frac{dx}{du} d u = \int \frac{F ( u )}{f^{'} ( x )} d u \qquad u = f ( x ) $
$ \int u^n d u = \frac{u^{n+1}}{n+1} +C \qquad n \neq -1 $
$ \int \frac{d u}{u} = \ln u+C \ ( if \ u > 0 ) \ \text{or} \ln {-u}+C \ ( \text{if} \ u < 0 ) = \ln \left | u \right | $
$ \int e^u d u = e^u +C $
$ \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ \text{and} \ a \neq 1 $
$ \int \sin u\ d u = - \cos u +C $
$ \int \cos u\ d u = \sin u +C $
$ \int \tan u\ d u = - \ln {\cos u} +C $
$ \int \cot u\ d u = \ln {\sin u} +C $
$ \int \frac{d u}{\cos u} = \ln { \left ( \frac{1}{\cos u} + \tan u \right )} +C = \ln{\tan {\left ( \frac{u}{2}+\frac{\pi}{4}\right )}} +C $
$ \int \frac{d u}{\sin u} = \ln { \left ( \frac{1}{\sin u} - \cot u \right )} +C = \ln{\tan { \frac{u}{2}}} +C $
$ \int \frac{d u}{\cos ^2 u} = \tan u +C $
$ \int \frac{d u}{\sin ^2 u} = - \cot u +C $
$ \int \tan ^2 u \ d u = \tan u - u+C $
$ \int \cot ^2 u \ d u = - \cot u - u+C $
$ \int \sin ^2 u \ d u= \frac{u}{2} - \frac{\sin {2 u}}{4} +C = \frac{1}{2}\left( u - \sin u \cos u \right )+C $
$ \int \frac {1}{\cos u} \tan u \ d u = \frac{1}{\cos u}+C $
$ \int \frac {1}{\sin u} \cot u \ d u = - \frac{1}{\sin u}+C $
$ \int \sinh u \ d u = \coth u+C $
$ \int \cosh u \ d u = \sinh u+C $
$ \int \tanh u \ d u = \ln \cosh u+C $
$ \int \coth u \ d u = \ln \sinh u+C $
$ \int \frac {1}{\operatorname{ch}\ u} \ d u = \arcsin{\left ( \operatorname{th}\,u \right )}+C \qquad or \ 2 arc \ th \ e^u+C $
$ \int \frac {1}{\operatorname{sh}\ u} \ d u = \ln \operatorname{th}\,\frac{2}{2}+C \qquad or \ - \operatorname{Arg coth} \ e^u+C $
$ \int \frac {1}{\operatorname{ch^2}\ u} \ d u = \operatorname{th}\,u $
$ \int \frac {1}{\operatorname{sh^2}\ u} \ d u = - \operatorname{coth}\,u $
$ \int \operatorname{th^2}\ u \ d u = u - \operatorname{th}\,u $
$ \int \operatorname{coth^2}\ u \ d u = u - \operatorname{coth}\,u $
$ \int \operatorname{sh^2}\ u \ d u = \frac {\operatorname{sh}\,{2 u}}{4} - \frac{u}{2}=\frac{1}{2}\left ( \operatorname{sh}\,u \ \operatorname{ch}\,u - u \right ) $
$ \int \operatorname{ch^2}\ u \ d u = \frac {\operatorname{sh}\,{2 u}}{4} + \frac{u}{2}=\frac{1}{2}\left ( \operatorname{sh}\,u \ \operatorname{ch}\,u + u \right ) $
$ \int \frac{\operatorname th \ u}{\operatorname ch \ u} \ d u = - \frac {1}{\operatorname ch \, u } $
$ \int \frac{\operatorname coth \ u}{\operatorname sh \ u} \ d u = - \frac {1}{\operatorname sh \, u } $
$ \int \frac{d u}{u^2 + a^2} = \frac {1}{a}\arctan \frac{u}{a} $
$ \int \frac{d u}{u^2 - a^2} = \frac {1}{2 a}\ln \left ( \frac{u-a}{u+a} \right ) = -\frac{1}{a} \operatorname{argcoth} \ \frac{u}{a} \qquad u^2 > a^2 $
$ \int \frac{d u}{a^2 - u^2} = \frac {1}{2 a}\ln \left ( \frac{a+u}{a-u} \right ) = \frac{1}{a} \operatorname{argth}\ \frac{u}{a} \qquad u^2 < a^2 $
$ \int \frac{d u}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} $
$ \int \frac{d u}{\sqrt{u^2 + a^2}} = \ln { \left ( u + \sqrt {u^2+a^2} \right ) } \qquad or \ \operatorname{argth} \ \frac{u}{a} $
$ \int \frac{d u}{\sqrt{u^2 - a^2}} = \ln { \left ( u + \sqrt {u^2-a^2} \right ) } $
$ \int \frac{d u}{u \sqrt{u^2 - a^2}} = \frac {1}{a} \arccos \left | \frac{a}{u} \right | $
$ \int \frac{d u}{u \sqrt{u^2 + a^2}} = - \frac {1}{a} \ln \left ( \frac{a + \sqrt{u^2 + a^2}}{u} \right ) $
$ \int \frac{d u}{u \sqrt{a^2 - u^2}} = - \frac {1}{a} \ln \left ( \frac{a + \sqrt{a^2 - u^2}}{u} \right ) $
$ \int f^{(n)} \ g d x =f^{(n-1)} \ g - f^{(n-2)} \ g' + f^{(n-3)} \ g'' - \cdot \cdot \cdot \ (-1)^n \int fg^{(n)} d x $

Back to Table of Indefinite Integrals

Back to Collective Table of Formulas

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett