Content moved from (last edits of) Student_summary_spectral_analysis_2D_signals (to preserve initial page created in 2009).


Continuous Space Fourier Transform of 2D Signals

Continuous Space Fourier Transform (2D Fourier Transform)
1D Continuous Space Fourier Transform(CSFT) definitions and its inverse transform
Continous Space Fourier Transform $ \mathcal{X}(f)=\int_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt $
Inverse Continous Space Fourier Transform $ x(t)=\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{j2\pi ft} df $
2D Continuous Space Fourier Transform(CSFT) definitions and its inverse transform
Forward transform $ \mathcal{F}(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy } $
Inverse transform $ f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } $
2D Continuous Space Fourier Transform(CSFT) Properties
$ \displaystyle x(t) $ $ \longrightarrow $ $ \mathcal{X}(f) $
Linearity $ \displaystyle af_1(x,y)+bf_2(x,y) $ $ \displaystyle aF_1(u,v)+bF_2(u,v) $
Scaling $ f(\frac{x}{a},\frac{y}{b}) $ $ \displaystyle|ab|F(au,bv) $
Shifting $ \displaystyle f(x-x_o,y-y_o) $ $ \displaystyle F(u,v)e^{-j2\pi(ux_o+vy_o)} $
Modulation $ \displaystyle f(x,y)e^{j2\pi(xu_o+yv_o)} $ $ \displaystyle F(u-u_o,v-v_o) $
Reciprocity $ \displaystyle F(x,y) $ $ \displaystyle f(-u,-v) $
Other Properties
Parseval’s relation $ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv } $
Initial Value $ F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy } $
Symmetry Properties for Continuous Space Fourier Transform
If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.
$ \displaystyle F(u,v)=A(u,v)e^{j\theta(u,v)} $
$ \displaystyle F(u,v)=F^{*}(-u,-v) $
$ \displaystyle A(u,v)=A(-u,-v) $
$ \displaystyle \theta(u,v)=-\theta(-u,-v) $
$ f(x,y)=2 \int_0 ^{\infty}\int_{-\infty}^{\infty}{ A(u,v)cos[2 \pi(ux+vy)+ \theta(u,v)] dudv} $
Separability
$ \displaystyle g(x) $ $ \longrightarrow $ $ \displaystyle G(u) $
$ \displaystyle h(x) $ $ \longrightarrow $ $ \displaystyle H(v) $
$ \displaystyle f(x,y) $ $ \longrightarrow $ $ \displaystyle F(u,v) $
$ \displaystyle f(x,y)=g(x)h(y) $ $ \longrightarrow $ $ \displaystyle F(u,v)=G(u)H(v) $
For example,
$ \displaystyle rect(x,y)=rect(x)rect(y) $ $ \longrightarrow $ $ \displaystyle sinc(u)sinc(v)=sinc(u,v) $
  • Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).
$ \displaystyle circ(x,y) $ $ \longrightarrow $ $ \displaystyle jinc(u,v) $
  • Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.
Important Continuous Space Fourier Transform Pairs
$ \displaystyle x(t) $ $ \longrightarrow $ $ \mathcal{X}(f) $
$ \displaystyle \delta (x,y) $ $ \displaystyle 1 $
$ \displaystyle 1 $ $ \displaystyle \delta (u,v) $
$ \displaystyle rect(x) $ $ \displaystyle sinc(u) \delta (v) $
$ \displaystyle \delta (x) $ $ \displaystyle \delta (v) $
$ e^{j2\pi(u_ox+v_oy)} $ $ \displaystyle \delta (u-u_o,v-v_o) $
$ \displaystyle cos[2\pi(u_ox+v_oy)] $ $ \frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] $
2D Continuous Space Fourier Transform in Polar Form
$ \displaystyle x=r \cos (\theta) $ $ \longrightarrow $ $ \displaystyle u= \rho \cos (\phi) $
$ \displaystyle y=r \sin (\theta) $ $ \longrightarrow $ $ \displaystyle v= \rho \sin (\phi) $
Forward transform $ F(\rho,\phi)=\int_0 ^{2\pi}\int_0 ^{\infty}{f(r,\theta)e^{-j2\pi\rho r cos(\phi -\theta)}r dr d \theta } $
Inverse transform $ f(r,\theta)=\int_0 ^{2\pi}\int_0 ^{\infty}{F(\rho,\phi)e^{j2\pi\rho r cos(\phi -\theta)}\rho d \rho d \phi } $


some properties related to the polar representations
Rotation $ \displaystyle f(r,\theta +\alpha ) $ $ \displaystyle F(\rho ,\phi + \alpha) $
Circular Symmetry $ \displaystyle f(r,\theta)=f_o(r) $ $ \displaystyle F(\rho , \phi)=F_o(\rho) $
Circular Symmetry $ \displaystyle f(r,\theta)=f_o(r) $ $ \displaystyle F(\rho , \phi)=F_o(\rho) $
Convolution Theorem $ \displaystyle f_1(x,y) \circledast f_2(x,y) $ $ \displaystyle F_1(u,v)F_2(u,v) $
Product Theorem $ \displaystyle f_1(x,y)f_2(x,y) $ $ \displaystyle F_1(u,v) \circledast F_2(u,v) $



Back to ECE438 Fall 2010 course page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn