- 14:02, 29 July 2009 (diff | hist) . . (+4,779) . . N MA598R 7.10 (New page: 7.10 Let <math>\varphi \geq 0</math> with <math>\int_{\mathbb{R}^n} \varphi(y)dy =1</math>. Denote <math>\varphi_{\epsilon}(x) = \epsilon^{-n}\varphi\left(\frac{x}{\epsilon}\right)</math>....)
- 11:39, 29 July 2009 (diff | hist) . . (+816) . . N MA598R 7.9 (New page: 7.9 Given that <math>f \in L^1(\mathbb{R})</math> and <math>\int_{\mathbb{R}}\int_{\mathbb{R}} f(4x)f(x+y)dxdy =1</math>, calculate <math>\int_{\mathbb{R}} f(x) dx</math>. Since <math>f...) (current)
- 11:28, 29 July 2009 (diff | hist) . . (+831) . . N MA598R 7.2 (New page: 7.2 Define the Fourier transform of <math>f \in L^1(\mathbb{R})</math> by <math>\widehat{f}(x) = \int_{-\infty}^{\infty} f(t) e^{-ixt}dt</math> If <math>f</math>, <math>g \in L(\mathbb{R...)
- 09:03, 29 July 2009 (diff | hist) . . (+3,473) . . N MA598R 7.7 (New page: 7.7. Let <math>K(x) = (4\pi)^{\frac{-n}{2}}e^{\frac{-|x|^2}{4}}</math>, <math>x \in \mathbb{R}^n</math>, and let <math>K_t(x) = t^{\frac{-n}{2}}K\left(\frac{x}{\sqrt{t}}\right)</math>, <ma...)