Recurrent State and Transient State

The recurrence probability examines whether the Markov chain can return to a state again n-steps after starting from that state. If it’s true, then we call those recurrent states; otherwise, we call them transient states.

Let $ f_{j}^{n} = P(X_{n} = j, X_{k} \neq j, 1 \leq k \leq n | X_{0} = j) \\ f_{j} = \sum_{n=1}^{\infty} f_{j}^{n} $

If $ f_{j} = 1 $, state $ j $ is recurrent; if $ f_{j} < 1 $, state $ j $ is transient.

If we have a Markov chain with limited states; if $ i \leftrightarrow j $, and $ i $ is recurrent, then so is $ j $.

To get more examples and proofs for the aforementioned theorems and properties, readers can check out this document


Back to Markov Chains

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal