Theorem

Let F be a $ \sigma $-field, then

$ A_i\in\mathcal F\;\forall i=1,2,...\;\Rightarrow\;\bigcap_{i=1}^{\infty}A_i \in\mathcal F $



Proof

By definition of $ \sigma $-fields,

$ \begin{align} A_i\in\mathcal F\;\forall i\;&\Rightarrow\;A_i^C\in\mathcal F\;\forall i\\ &\Rightarrow\;\bigcup_{i=1}^{\infty}A_i^C\in\mathcal F \\ &\Rightarrow\;(\bigcup_{i=1}^{\infty}A_i^C)^C\in\mathcal F \\ &\Rightarrow\;\bigcap_{i=1}^{\infty}A_i\in\mathcal F \end{align} $


For the last implication, I am using an application of De Morgan's Law on countable Unions.
$ \blacksquare $



Back to Probability Spaces

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang