Problem #7.5 MA598R, Summer 2009, Weigel

Back to The_Pirate's_Booty

Let $ f\in L^1(\mathbb{R}) $. Show that $ \hat{f}(x) $ is continuous and $ \lim_{|x|\to\infty} \hat{f}(x)=0 $.

Proof: To show continuity, we only need to show that if $ x_k\to x $ then $ \hat{f}(x_k)\to\hat{f}(x) $

$ \lim_{k\to\infty}\hat{f}(x_k)=\lim_{k\to\infty}\int e^{-ix_kt}f(t)dt = \int e^{-ixt}f(t)dt = \hat{f}(x) $

We can pass this limit through the integral since $ \hat{f} $ is dominated by $ f\in L^1 $


Now, to prove that $ \widehat{f}(\xi) \rightarrow 0 $ as $ |\xi|\rightarrow\infty $

Define the Fourier Transform to be:

$ \widehat{f}(\xi) = \int_{R} f(x) e^{-\imath 2\pi x \xi} dx $

Note that if we let $ x \rightarrow x+\frac{1}{2\xi} $, we get the following:

$ - \widehat{f}(\xi) = \int_{R} f(x+\frac{1}{2\xi}) e^{-\imath 2\pi (x+\frac{1}{2\xi}) \xi} dx $

Hence, subtracting the two, we get:

$ 2 \widehat{f}(\xi) = \int_{R} \left[f(x) - f(x+\frac{1}{2\xi})\right] e^{-\imath 2\pi x \xi} dx $

And now, we get that

$ |2 \widehat{f}(\xi)| \leq \int_{R} |\left[f(x) - f(x+\frac{1}{2\xi})\right]| dx $

Now, let $ |\xi| \rightarrow \infty $, and from a previous assignment, the right hand side goes to 0, and so too must $ \widehat{f}(\xi) $

Written by Robert and Nick


Back to the Pirate's Booty

Back to Assignment 7

Back to MA598R Summer 2009

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett