Denote $ f_n = x^\frac{1}{n}f $. We have $ |f_n| \uparrow |f| \in L^1 $, so applying MCT or DCT yields the result

$ \lim_{n \rightarrow \infty} \int_{(0,1)} f_n = \int_{(0,1)} f < \infty $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood