Q: Is the signal: $ x(t)=\sum_{k=-\infty}^\infty k = \frac{1}{(t+2k)^2+1} $ periodic?


A: Yes:


$ x(t+2)=\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1} $

$ =\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1} $

$ =\sum_{k=-\infty}^\infty k \frac{1}{(t+2(k+1))^2+1} $ Setting $ r = k+1 $

$ =\sum_{k=-\infty}^\infty k = \frac{1}{(t+2r)^2+1} $

$ =\text{x(t+2)} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison