The question

Is the signal $ x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} $ periodic?


$ x(t+2) = \sum_{k = -\infty}^\infty \frac{1}{(t+2+2k)^2+1}\, $
$ x(t+2) = \sum_{k = -\infty}^\infty \frac{1}{(t+2(k+1))^2+1}\, $

Subsitute $ r $ = $ k+1 $


$ x(t+2) = \sum_{r = -\infty}^\infty \frac{1}{(t+2r)^2+1} = x(t)\, $



Clearly, the system is periodic.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin