$ x(t)=\sum_{k=-\infty}^\infty k = \frac{1}{(t+2k)^2+1} $ periodic?

Yes it is periodic

$ x(t+2)=\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1} $

$ =\sum_{k=-\infty}^\infty k \frac{1}{(t+2+2k)^2+1} $

$ =\sum_{k=-\infty}^\infty k \frac{1}{(t+2(k+1))^2+1} $ (Assume R = k+1)

$ =\sum_{k=-\infty}^\infty k = \frac{1}{(t+2R)^2+1} $

$ =\text{x(t+2)} $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman